mushi.composition.ilr_inv
- ilr_inv(mat, basis)[source]
Performs inverse isometric log ratio transform.
This function transforms compositions from the real space to Aitchison geometry. The \(ilr^{-1}\) transform is both an isometry, and an isomorphism defined on the following spaces
\(ilr^{-1}: \mathbb{R}^{D-1} \rightarrow S^D\)
The inverse ilr transformation is defined as follows
\[ilr^{-1}(x) = \bigoplus\limits_{i=1}^{D-1} x \odot e_i\]where \([e_1,\ldots, e_{D-1}]\) is an orthonormal basis in the simplex.
If an orthornormal basis isn’t specified, the J. J. Egozcue orthonormal basis derived from Gram-Schmidt orthogonalization will be used by default.
- Parameters
mat (numpy.ndarray, float) – a matrix of transformed proportions where rows = compositions and columns = components
basis (numpy.ndarray, float, optional) – orthonormal basis for Aitchison simplex defaults to J.J.Egozcue orthonormal basis
Examples
>>> import numpy as np >>> import mushi.composition as cmp >>> x = np.array([.1, .3, .6,]) >>> basis = cmp._gram_schmidt_basis(4) >>> cmp.ilr_inv(x, basis) DeviceArray([0.34180297, 0.29672718, 0.22054469, 0.14092516], dtype=float64)